
A Test Suite for Basic CWE Effectiveness

Paul E. Black
paul.black@nist.gov

http://samate.nist.gov/

Static Analysis Tool Exposition
(SATE V) News

l  We choose test cases by end of May
l  Tool output uploaded to NIST web site by

end of July (end of August at latest)
l  Use Coverage Claims Representation
l  Experience workshop in early 2014
l  Prizes for best test cases
l  We invite

–  tool users to be on planning committee
–  static analysis tool makers to participate

2

Statistics, the Universe of Programs,
and Everything Relevant (SUPER)
l  We want a set of small programs that statistically

represent all programs.
l  But, what is the universe, i.e., “all programs”?
l  All strings of characters? All programs that

compile? Everything a competent programmer
would write? Including malware and obfuscated
code? Generated code?

l  What statistics do we want? Can we even pose
reasonable questions?

l  Let’s get statisticians, computer scientists, and
others together in a workshop.

3

Common Weakness Enumeration
(CWE)

l  A “dictionary” of every kind of bug or flaw
in software.

l  More than 600 distinct classes
–  For instance, buffer overflow, OS injection,

race condition, cross-site scripting, directory
traversal, left-over debug code, hard-coded
password, and insecure random number
generator.

http://cwe.mitre.org/

4

MITRE’s CWE Compatibility and
Effectiveness Program
l  Phase 1 – Declare compatibility
l  Phase 2 – Verify mapping to CWEs
l  Phase 3 – Test cases whose results “allow

[one] to understand which CWE identifiers
[a] capability is effective in locating”

 http://cwe.mitre.org/compatible/program.html

5

Start With CWE-121 Stack-based
Buffer Overflow in C Language
l  It is a frequent, serious problem.
l  It is well-defined and easily understood.
l  We have thousands of examples.
l  It is addressed by static analysis, compile-

time techniques, or run-time detection.

We Propose a Test Suite for
Basic CWE Effectiveness

7

What is the Test Suite Like?

l  Publicly available
l  Consists of a small number of programs
l  Each program is

–  short
–  code is vulnerable, i.e., exploitable
–  standard code (no language extensions)
–  (usually) synthetic
–  fairly “clean”

8

Background Work

l  Over the summer NIST researchers
installed five static analyzers, then
examined 7,338 cases in 9,962 files from
–  Juliet (split into 5,892 good & bad cases)
–  Kratkiewicz (1,139 cases)
–  KDMA TCG (249 cases)
–  2005 Fortify (41 cases)
–  other SRD (17 cases)

Proposed CWE-121 Basic Set

l  It consists of five cases.

l  The most basic case is basic-00001-min.c
char buf[10];!
buf[10] = ’A’;!

Two More Cases

l  basic-00034-min.c
–  access through a pointer!

*(buf + 10) = ’A’;!

l  basic-00045-min.c
–  library function
!strcpy(buf, "AAAAAAAAAA");

Last Two Cases

l  basic-00182-min.c
–  fgets(): limited copy and external input
!fgets(buf, 11, f);!

l  stack_overflow_loop.c

–  variable index; bad bounds check
for (unsigned i=1;i<=10;++i) {!
 bStr[i] = (char)i + ’A’;!

Next Step – Code Complexities

l  to "articulate what types of complexity in
software [a] capability is most successful
at dealing with ..."

13

What is “Code Complexity”?
 char data;!
!
 data = ’C’;!
!
!
!
!
!
 data = ’Z’;!
 printHexCharLine(data);!

14

 char data;!
 if (1) {!
 data = ’C’;!
 } else {!
 data = ’C’;!
 printHexCharLine(data);!
 }!
 if (1) {!
 data = ’Z’;!
 printHexCharLine(data);!
 } else {!
 printHexCharLine(data);!
 }!

CWE-563 Unused Variable, after SRD test cases 35455 and 35456

Complexity Factors

l  Other fns: str(n)cpy/cat, memcpy/move, s(n)printf
l  Separate files (caseA.c & caseB.c)
l  Duplicate variable or function names
l  Dynamic allocation (alloca); other scopes
l  Complex expressions in index, allocation, tests, etc.
l  Data Types
l  Containers (buffer in struct)
l  Unreachable and dead code
l  Open coded or obfuscated str(n)cpy()
l  Weakness vs. Vulnerability

15

More Complexity Factors

l  Unflawed cases (for false positive)
l  Minimal (“fake”) parsing
l  Alias (passed through other variables)
l  Access by array or pointer
l  Read or write access
l  Gravity (just outside buffer or far beyond)
l  Continuity (every element or jumping)
l  Control flow & loop structure
l  Intervening path
l  Taint source

16

What about tool “short cuts”?

l  Tool makers may build to a public, static set.
–  A secret or dynamic set has other problems.

l  Change comments and identifier names for
every download?

l  Add innocuous statements?
l  Transform code, like unroll loops?

Proposal:
l  If concerns arise, privately corroborate results.

17

18

l  Sound analysis is not
perfect anyway.

l  No test set can show
all possible bugs,
heuristics, variants,
and corner cases.

l  How thorough should
the test set be?

“Snake oil”

The Problem

Measurement is Multidimensional

19

SAMATE Reference Dataset
l  Public repository for soft-

assurance test cases

l  Over 60,000 cases in C,
C++, Java, C#, and Python

l  Search and select by
language, weakness, etc.

l  Contributions from CAS,
Fortify, Defence R&D
Canada, Klocwork, MIT
Lincoln Laboratory, Praxis,
Secure Software, etc.

http://samate.nist.gov/SRD/

Juliet 1.1 Test Suite

l  81,056 small C/C++ and Java programs
covering 181 weakness classes

l  Each case is one or two pages of code
l  Organized by weakness, then variant, then

complexity
l  Described in IEEE Computer, Oct 2012

21

STONESOUP 1 cases

l  About 460 cases in Java and C, each a
program typically 200-300 lines long

l  Cover weaknesses in Number Handling
(e.g. integer overflow), Tainted Data (e.g.
input validation, Injection (e.g. command
injection, Buffer Overflow, and Null Pointer

l  Each case has inputs triggering the
vulnerability, as well as “safe” inputs

l  Available as test suites

Kratkiewicz MIT cases

l  1164 cases in C for CWE-121 Stack-Based
Buffer Overflow

l  Created to investigate static analysis and
dynamic detection methods

l  Each case is one of four variants:
–  access within bounds (ok)
–  access just outside bound (min)
–  somewhat outside bound (med)
–  far outside bound (large)

l  Code complexities: index, type, control, …

Other SRD Content

l  Zitser, Lippmann, & Leek MIT cases
–  28 slices from BIND, Sendmail, WU-FTP, etc.

l  Fortify benchmark 112 C and Java cases
l  Klocwork benchmark 40 C cases
l  25 cases from Defence R&D Canada
l  Robert Seacord, “Secure Coding in C and

C++” 69 cases
l  Comprehensive, Lightweight Application

Security Process (CLASP) 25 cases
l  329 cases from our static analyzer suite

